### When should I go for K-Means Clustering and when for Hierarchical Clustering ?

Often people get confused, which one of the two i.e. K-Means Clustering, and Hierarchical Clustering, techniques should be used for performing a Cluster Analysis.
Well, Answer is pretty simple, if your data is small then go for Hierarchical Clustering and if it is large then go for K-Means Clustering.

Why ???

All right !

In Hierarchical Clustering, first all the possible distances among the observations are calculated. With the basic Knowledge of Permutation and Combinations, we know that the number of Distances would be

n

No. of Pairs = C , where n is number of observations.

2

Now once the nearby observation make pair, the distances among newly formed pairs are calculated.

Imagine the number of distances if n = 5, in first iteration, it would be 5! / ( 2! * 3!) = 10, which are manageable.

However if n = 10,000 then number of distances = (10000! / ( 2! * 9998!)

Now (10000! / ( 2! X 9998!) = 10000 X 9999 / 2 = 49,99,500

And this is only first iteration. Despite in every iteration the number of distance reduce significantly, calculation of these many distances become quite un-manageable.

Hence we switch to K-Means Clustering.

Hence we switch to K-Means Clustering.

In K-Means Clustering, Suppose we go for K = 3 clusters, then all the observation are divided into 3 Clusters in purely random fashion, and 3 Centroids are Calculated

Now Distance of each observation with each Centroid is calculated. So in first iteration, keeping number of observation 10,000 again, the number of distances calculated would be = 3 X 10000 = 30000.

Now again Centroid would be calculated and then again the distances ( 30,000 again).

So even after fair number of iterations, calculation of distances remains quite manageable.

Then one would say, then we should use only K-Means ... well, I would say ... You can.

But in K-Means Clustering,we need to iterate the model to find out the optimal number of Clusters, but in Hierarchical Clustering, it automatically gives result at various number of Clusters.

Time is money, so please make a habit to save it.

Hence, use hierarchical Clustering for small dataset, and K-Means Clustering for large dataset.

Enjoy reading our other articles and stay tuned with ...

Kindly do provide your feedback in the 'Comments' Section and share as much as possible.

This comment has been removed by a blog administrator.

ReplyDeletebitlis

ReplyDeleteurfa

mardin

tokat

çorum

3UAUK

https://titandijital.com.tr/

ReplyDeletemersin parça eşya taşıma

osmaniye parça eşya taşıma

kırklareli parça eşya taşıma

tokat parça eşya taşıma

A2B

A90D6

ReplyDeleteReferans Kimliği Nedir

Bursa Evden Eve Nakliyat

Kayseri Evden Eve Nakliyat

Çerkezköy Çatı Ustası

Hatay Evden Eve Nakliyat

3D53D

ReplyDeleteBitmex Güvenilir mi

Ünye Kurtarıcı

İzmir Evden Eve Nakliyat

Osmaniye Şehir İçi Nakliyat

Tunceli Şehir İçi Nakliyat

Eryaman Alkollü Mekanlar

Bitfinex Güvenilir mi

Muğla Parça Eşya Taşıma

Tunceli Evden Eve Nakliyat

97901

ReplyDeletekars ücretsiz görüntülü sohbet

Giresun Kadınlarla Ücretsiz Sohbet

ücretsiz görüntülü sohbet

tunceli mobil sohbet sitesi

Bursa Sesli Sohbet Sesli Chat

edirne sohbet chat

antalya bedava sohbet

Çorum Parasız Sohbet

mobil sohbet bedava

95585

ReplyDeleteReferans Kimliği Nedir

Cate Coin Hangi Borsada

Binance Nasıl Üye Olunur

Bitcoin Nedir

Discord Sunucu Üyesi Satın Al

Soundcloud Beğeni Satın Al

Youtube Beğeni Hilesi

Bitcoin Yatırımı Nasıl Yapılır

Bitcoin Üretme Siteleri

C2A98

ReplyDeleteCoin Madenciliği Siteleri

Threads Takipçi Hilesi

Linkedin Beğeni Satın Al

Facebook Beğeni Satın Al

Trovo Takipçi Hilesi

Nonolive Takipçi Satın Al

Coin Nedir

Shibanomi Coin Hangi Borsada

Kripto Para Üretme Siteleri

DF5BA

ReplyDeletearbitrum

layerzero

trezor suite

metamask

solflare

zkswap

uwu lend

shiba

satoshi

23813

ReplyDeletebitcoin hesabı nasıl açılır

en düşük komisyonlu kripto borsası

binance

kripto para nereden alınır

canli sohbet

telegram en iyi kripto grupları

coinex

binance referans kimliği

bybit

92A23

ReplyDeletekucoin

kucoin

vindax

bingx

paribu

bitmex

bybit

poloniex

bitexen