When should I go for K-Means Clustering and when for Hierarchical Clustering ?
Often people get confused, which one of the two i.e. K-Means Clustering, and Hierarchical Clustering, techniques should be used for performing a Cluster Analysis.
Well, Answer is pretty simple, if your data is small then go for Hierarchical Clustering and if it is large then go for K-Means Clustering.
Why ???
All right !
In Hierarchical Clustering, first all the possible distances among the observations are calculated. With the basic Knowledge of Permutation and Combinations, we know that the number of Distances would be
n
No. of Pairs = C , where n is number of observations.
2
Now once the nearby observation make pair, the distances among newly formed pairs are calculated.
Imagine the number of distances if n = 5, in first iteration, it would be 5! / ( 2! * 3!) = 10, which are manageable.
However if n = 10,000 then number of distances = (10000! / ( 2! * 9998!)
Now (10000! / ( 2! X 9998!) = 10000 X 9999 / 2 = 49,99,500
And this is only first iteration. Despite in every iteration the number of distance reduce significantly, calculation of these many distances become quite un-manageable.
Hence we switch to K-Means Clustering.
Hence we switch to K-Means Clustering.
In K-Means Clustering, Suppose we go for K = 3 clusters, then all the observation are divided into 3 Clusters in purely random fashion, and 3 Centroids are Calculated
Now Distance of each observation with each Centroid is calculated. So in first iteration, keeping number of observation 10,000 again, the number of distances calculated would be = 3 X 10000 = 30000.
Now again Centroid would be calculated and then again the distances ( 30,000 again).
So even after fair number of iterations, calculation of distances remains quite manageable.
Then one would say, then we should use only K-Means ... well, I would say ... You can.
But in K-Means Clustering,we need to iterate the model to find out the optimal number of Clusters, but in Hierarchical Clustering, it automatically gives result at various number of Clusters.
Time is money, so please make a habit to save it.
Hence, use hierarchical Clustering for small dataset, and K-Means Clustering for large dataset.
Enjoy reading our other articles and stay tuned with ...
Kindly do provide your feedback in the 'Comments' Section and share as much as possible.
This comment has been removed by a blog administrator.
ReplyDeletebitlis
ReplyDeleteurfa
mardin
tokat
çorum
3UAUK
https://titandijital.com.tr/
ReplyDeletemersin parça eşya taşıma
osmaniye parça eşya taşıma
kırklareli parça eşya taşıma
tokat parça eşya taşıma
A2B
A90D6
ReplyDeleteReferans Kimliği Nedir
Bursa Evden Eve Nakliyat
Kayseri Evden Eve Nakliyat
Çerkezköy Çatı Ustası
Hatay Evden Eve Nakliyat
3D53D
ReplyDeleteBitmex Güvenilir mi
Ünye Kurtarıcı
İzmir Evden Eve Nakliyat
Osmaniye Şehir İçi Nakliyat
Tunceli Şehir İçi Nakliyat
Eryaman Alkollü Mekanlar
Bitfinex Güvenilir mi
Muğla Parça Eşya Taşıma
Tunceli Evden Eve Nakliyat
97901
ReplyDeletekars ücretsiz görüntülü sohbet
Giresun Kadınlarla Ücretsiz Sohbet
ücretsiz görüntülü sohbet
tunceli mobil sohbet sitesi
Bursa Sesli Sohbet Sesli Chat
edirne sohbet chat
antalya bedava sohbet
Çorum Parasız Sohbet
mobil sohbet bedava
95585
ReplyDeleteReferans Kimliği Nedir
Cate Coin Hangi Borsada
Binance Nasıl Üye Olunur
Bitcoin Nedir
Discord Sunucu Üyesi Satın Al
Soundcloud Beğeni Satın Al
Youtube Beğeni Hilesi
Bitcoin Yatırımı Nasıl Yapılır
Bitcoin Üretme Siteleri
C2A98
ReplyDeleteCoin Madenciliği Siteleri
Threads Takipçi Hilesi
Linkedin Beğeni Satın Al
Facebook Beğeni Satın Al
Trovo Takipçi Hilesi
Nonolive Takipçi Satın Al
Coin Nedir
Shibanomi Coin Hangi Borsada
Kripto Para Üretme Siteleri
DF5BA
ReplyDeletearbitrum
layerzero
trezor suite
metamask
solflare
zkswap
uwu lend
shiba
satoshi
23813
ReplyDeletebitcoin hesabı nasıl açılır
en düşük komisyonlu kripto borsası
binance
kripto para nereden alınır
canli sohbet
telegram en iyi kripto grupları
coinex
binance referans kimliği
bybit
92A23
ReplyDeletekucoin
kucoin
vindax
bingx
paribu
bitmex
bybit
poloniex
bitexen